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The problem of sound transmission and reflection from unbounded panels of

functionally graded materials is studied using an analytical approach. By means of

differential equations with variable coefficients in the frequency and wavenumber

domain. Integration of the ordinary differential equation system across the panel

thickness leads to a closed-form solution for the transfer matrix. Analytical expressions

are then obtained for sound reflection and transmission coefficients for panels of

functionally graded materials. The present model is used to predict sound transmission

losses for various panel examples. The results compare well with published data from

other methods, thereby validating the accuracy of the formulation developed in this

study.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The interaction between an acoustic wave and a panel structure is an important subject that arises from practical
applications. Panel structures are often used to build walls and other structural components of vehicles and airplanes. These
structural panels are intended to not only withstand various internal and external loads, but also to provide acoustic insulation
from the noisy environment. Therefore, analysis and optimization of the acoustic characteristics of panels is an integral part of
the design of airframe structures [1]. Acoustic waveforms, after interacting with panel structures, may be modified in a way
specific to the panel geometry, underlying defects, and material compositions. Therefore, acoustic signals reflected or
transmitted from panel structures carry useful information that can be used for acoustic imaging [2], non-destructive
evaluation [3], structural health monitoring [4], and estimation of material properties [5,6]. In this work, we mainly focus on an
analytical study of sound transmission and reflection from panels of functionally graded materials (FGM).

Functionally graded panels are structures made of two or more materials in which the volume fraction of each
component varies continuously in the thickness direction, thereby achieving some desired function. Vibration and wave
propagation in functionally graded panels has been studied numerically and analytically. For example, Liu et al. did some
classical work on characteristics of surface waves on functionally graded piezoelectric material plates [7]. Chakraborty and
Gopalakrishnan [8] studied wave propagation in functionally graded materials using a variant of the finite element method
called the spectral layer element. This element is exact if the material properties follow an exponential relationship across
the panel thickness. Reddy [9] developed finite element models based on the third-order shear deformation plate theory
for the analysis of through-thickness functionally graded plates. Venkataraman and Sankar [10] obtained an elasticity
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solution for stresses in a sandwich beam with functionally graded core. Vel and Batra [11] obtained an exact solution for
three-dimensional deformations of a simply supported functionally graded rectangular plates subjected to mechanical and
thermal loads on its surfaces. Wang and Rokhlin [12] derived differential equations governing transfer and stiffness
matrices for wave propagation in a functionally graded multi-layered elastic medium. Shuvalov et al. [13] considered
propagation of guided acoustic waves in infinite functionally graded piezoelectric plates using the state-vector formalism.

In contrast, the literature on sound transmission through functionally graded panels is relatively scarce. Hasheminejad
and Shabanimotlagh [14] focused on this topic, and reported their numerical work on sound insulation characteristics of
functionally graded panels. On the other hand, studies on the sound transmission through multi-layered panels,
particularly through sandwich panels, have been extensive [15–24]. For example, Thomson applied the classical method of
transfer matrix to study transmission of elastic waves through a stratified solid medium [15]. Smolenski and Krokosky [16]
focused on the dilational-mode sound transmission in sandwich panels. Guyader and Lesueur [17] studied acoustic
transmission through orthotropic multi-layered plates using a numerical approach. Dym and Lang [18] considered
transmission loss of damped asymmetric sandwich panels with orthotropic cores. Wang et al. [19] used a higher-order
method to predict sound transmission, while Assaf and Guerich [20] applied the finite element method to study noise
transmission loss through viscoelastically damped sandwich plates. In recent years, analytical method that is based on the
exact stress–strain relationship has gained some popularity [21–24]. With this analytical approach, Cai et al. analyzed
sound reflection and transmission for anisotropic laminates and other paneled structures [21,22]. Lin et al. [23] obtained
sound transmission loss across specially orthotropic laminates. Based on 3-D elasticity theory, Huang and Nutt [24]
developed analytical formulations for sound transmission and reflection from multi-layered panels.

In this study, we extend our prior work based on 3-D elasticity theory to develop analytical formulations for acoustic
reflection and transmission from unbounded panels of functionally graded materials. In the frequency and wavenumber
domain, the governing elastodynamics equations are converted into a system of first-order ordinary differential equations
with variable coefficients for functionally graded panels, in which the material properties vary only in the thickness
direction. Similar procedure was also used in prior studies known as propagator matrix method [25,26] or state-space
method [21,22]. We solved the variable coefficient equation system by performing a matrix exponential to derive the
transfer matrix and then obtained the analytical solutions for sound transmission and reflection coefficients. The resulting
analytical expressions are applicable to both FGM panels and multi-layered panels. In fact, our formulation can be viewed
as a unified treatment for these two panel types. In the following account, we first develop the modeling theory, then
present examples and results to validate the formulation.

2. Theory

In this section, we will develop the analytical formulation for sound transmission and reflection from infinite panels comprised
of functionally graded materials (FGM). We first consider the panel dynamics in the physical space-time domain, then derive the
transfer matrix in the spectral and wavenumber domain, and finally solve for the transmission and reflection coefficients.

2.1. Panel dynamics in physical domain

The interaction between an incident acoustic wave and an infinite FGM panel of thickness h is shown schematically in
Fig. 1. The plane acoustic wave impinges on one surface of the FGM panel with an incident angle y. As a result, a reflected
wave and a transmitted wave are generated from the incident (bottom) and exit (top) surfaces of the panel, respectively.
θ

z
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Metallic surface

Ceramic surface

x

p(in) p(re)
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Fig. 1. An incident sound wave p(in) impinges on the bottom surface of an FGM panel with an incident angle y, which is then split into a reflected wave p(re)

from the bottom surface and a transmitted wave p(tr) from the top surface. The incident wave lies in the xz-plane, which makes the azimuthal angle f=0.
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The panel dynamics in the physical domain is described by the elastodynamics equations,
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where r is the density of the panel, and

u¼ ðu,v,wÞT,

r¼ ðsxx,syy,szz,syz,szx,sxyÞ
T (2)

are column vectors of the displacement and stresses, respectively. Here, the symmetric property of the stress tensor is
assumed, i.e., rij=rji. Consider a transversely isotropic FGM panel whose mechanical properties (density and elastic
moduli) vary in the panel thickness direction, i.e., the z-direction, but not in the in-plane (x,y)-directions. Note that the
displacement and the z-component stresses are continuous in the thickness direction because these stress components are
the normal components to the inhomogeneity, that is
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The equation above suggests that the stress vector r can be re-grouped into two sub-vectors, i.e., a z-component sub-
vector and an in-plane component sub-vector
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In lieu of re-grouping the stress vector, Eq. (1) can be re-written as
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We next turn to the strain–stress relationship and make it consistent with the re-grouping Eq. (5). The general strain–
stress relationship for a structural element is
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where e is the strain vector and S the compliance matrix. Recall that for an orthotropic FGM panel, the mechanical
properties change in the thickness direction. Therefore, the compliance matrix S in Eq. (7) is a function of z, i.e.

S¼ SðzÞ: (8)

As mentioned earlier, we shall reorganize the stress vector into two parts, i.e., a z-component part and an in-plane component part
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Next we re-arrange the strain vector in similar fashion
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Substitution of Eqs. (9) and (10) into Eq. (7) yields

eu¼M�1SMru¼ Suru: (11)

This equation can be written explicitly as
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Eq. (12) can be re-written as two equations—one for the z-component strain, and one for the in-plane strain
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With tensor notation, Eqs. (13) and (14) can be written in a more compact form as
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Comparing the coefficient matrices in Eq. (6) with those in Eqs. (13) and (14), Eq. (6) can be written as
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Eqs. (15)–(17) constitute a system of partial differential equations for three vector variables, u, ru1 and ru2. Note that the variable
ru2 does not possess a partial derivative with respect to z, and thus can be eliminated from Eqs. (15) and (17) using Eq. (16). The
result is
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Eqs. (18) and (19) are general, as they are derived from the elastodynamics Eqs. (1) and the constitutive strain–stress relationship
in Eq. (7).

2.2. Fourier component analysis and transfer matrix

We will use the method of Fourier component analysis to simplify Eqs. (18) and (19). Because the FGM panels of our
interest have infinite extent in the x and y directions, the Fourier component in the frequency and wavenumber domain
can be written as

uðt,x,y,zÞ ¼ uðo,kx,ky,zÞeikxxeikyye�iot ,

ru1ðt,x,y,zÞ ¼ ru1ðo,kx,ky,zÞeikxxeikyye�iot , (20)
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where kx and ky are wavenumbers in the x and y directions, respectively, and o is the circular frequency. Substitution of
Eq. (20) into Eqs. (18) and (19) yields a system of first-order ordinary differential equations in terms of the over-barred variables
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Referring to Eqs. (18) and (19), we have
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Recall from Eq. (8) that the compliance matrix S is a function of z. Therefore Eq. (21) is an ordinary differential equation with
variable coefficient matrix, i.e.
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The solution for Eq. (26) can be written as
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In particular the solution at the exit (top) surface of the panel, where z=h, is
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Using Eq. (27), Eq. (29) can be written as
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where T is the transfer matrix that relates the variables (displacement and z-component stresses) on the incident surface of the
panel z=0 to those at the exit surface z=h. Eq. (30) is one of the key results of this study. The transfer matrix derived here
applies not only to functionally graded panels, but also to multi-layered panels. Note for multi-layered panels, the transfer
matrix is calculated simply by layer-wise summations over all the layers

T¼ exp

Z h

0
AðzÞdz¼

XN

n ¼ 1

Anhn: (31)

Therefore, we have arrived at a unified transfer matrix that is valid for both FGM panels and multi-layered panels. We next make
use of this transfer matrix to derive acoustic transmission and reflection coefficients for graded or layered structural panels.

2.3. Acoustic reflection and transmission coefficients

Referring to the diagram in Fig. 1 showing a plane wave incident on an unbounded panel, we can write the incident
wave traveling in air as

pðinÞðx,y,z,tÞ ¼ eikUxe�iot ¼ eikxxþ ikyyþ ikzze�iot : (32)

The wavenumber components must satisfy,
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where k0 and c0 are the wavenumber and speed of sound in the air, respectively. If the incident wave makes a polar angle y
and an azimuthal angle f with respect to the xz-plane, we have

kx ¼ k0 sinycosf, ky ¼ k0 sinf, kz ¼ k0 cosycosf: (34)

Without loss of generality, we assume the wave propagation vector k is on the xz-plane, which makes the azimuthal angle
f=0. The reflected wave and transmitted wave can be written as

pðreÞðx,y,z,tÞ ¼ Reikxxþ ikyy�ikzze�iot , (35)
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pðtrÞðx,y,z,tÞ ¼ Teikxxþ ikyyþ ikzze�iot , (36)

where R and T are the coefficients of the reflected and transmitted pressure waves, respectively. The fluid motion caused by
each such wave can be determined from the acoustic equations. The fluid particle displacement in the z-direction can be
written as
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where r0 is the air density. The boundary conditions on the top and bottom panel surfaces can be imposed in the frequency
and wavenumber domain. The top and bottom panel surfaces are in contact with the acoustic medium air. Therefore, the
z-component displacement and normal stress must be continuous, i.e., w=w(air) and szz=�p(air). In addition, the
z-component shear stresses must vanish, i.e., szx=szy=0. As a result, Eq. (30) becomes
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where tij are entries of the transfer matrix T as defined in Eq. (30). The superscripts ‘‘Top’’ and ‘‘Bot’’ refer to the top and
bottom surface of the panel respectively. T0 and T are related by

T u¼�Teikzh: (41)

Note that Eq. (40) constitutes six linear equations for solving six unknown variables. By Cramer’s rule, the solution for R
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Using R and T0 as determined from Eqs. (42) and (43), the acoustic reflection and transmission coefficients are computed as

r¼ 9R92
, t¼ 9T u92

: (47)

The analytical solution for the sound reflection and transmission coefficients as defined in Eqs. (42)–(46) is second key
result of this study. As with the transfer matrix in Eq. (30), the acoustic reflection and transmission coefficients are
applicable to both functionally graded panels and multi-layered panels. Therefore we have derived a unified formulation
for analyzing sound characteristics of panel structures.
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2.4. Comparison with conventional formalism

At this point we can compare the current formulation with the conventional approach for dealing with sound
transmission through functionally graded panels. In the conventional method [14], an FGM panel is first divided into
multiple thin layers. For each thin layer, the mechanical properties are approximated as constant. The acoustic governing
equations are then solved by enforcing matching boundary conditions at layer interfaces. In essence, this approach treats
an FGM panel as a multi-layered panel. The underlying assumption is that if the number of divided thin layers is
sufficiently large, then the staired profile of mechanical properties will approximate the original FGM profile. There are
pitfalls associated with this classical approach, as described below.

First, the classical approach does not specify the number of layers in which the panel must be divided. As a result,
consequently, one may have to use different numbers of layer divisions to check and ensure convergence of the result. This
leads to added complexity and computational inefficiency. On the other hand, the current formulation is naturally suited
for dealing with FGM panels while treating multi-layered panels as a special case.

Secondly, because the conventional approach is an approximate method for analyzing an FGM panel, the interpretation
of the numerical result is less straightforward, limiting the insight into the effects of some panel parameters. For instance,
in the conventional approach, the grazing angle y=901 is regarded as a singularity condition because it causes division-by-
zero error in the numerical treatment [14]. However, this grazing angle is not an actual singularity, as we can show from
the analytical solution. At the grazing angle y=901, we have k=kz/k0=cos y=0. Substituting k=0 into Eqs. (42)–(47), we see
that r=1 and t=0. In other words, at the grazing angle y=901, we get full acoustic reflection and no transmission. This is
expected and consistent with intuition. The effect of other panel properties is incorporated in the values of M3, M6 and N as
defined in Eqs. (44)–(46).

With the analytical solution obtained for FGM panels, we will consider some examples on sound transmission
characteristics of panel structures. In the study of sound transmission, the term sound transmission loss (TL) is often used,
and it is defined as

TL¼ 10log10
1

t

� �
: (48)

If the incident sound field is diffuse in nature, i.e., all incident angles are equally possible, then the averaged transmission
coefficient is used, given by
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In the equation above, the averaging is performed over all possible incident angles.

2.5. Evaluation of matrix exponential

Before presenting numerical examples, Eq. (29) warrants further comment. This equation involves the evaluation of the
exponential of a matrix,
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0 expðl2Þ 0

^ & ^

0 0 � � � expðlnÞ

0
BBBB@

1
CCCCAV�1: (52)

However, direct computation of Eq. (52) may present numerical difficulty. In the numerical examples presented below, we
used the MATLAB library function expm to evaluate the matrix exponential. This library function employs a scaling and
squaring algorithm with a Pade approximation to compute the exponential of a matrix. Interested readers are referred to
the paper by Higham [27] for more details on the algorithm. Numerically well-conditioned formulation can also be found
in the reference by Liu [28].
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3. Results

The current analytical solution applies to functionally graded panels as well as to multi-layered panels. As part of the
model validation, we first consider sound transmission through an isotropic aluminum panel and compare the solution
with available experimental data. We then apply the analytical solution to various FGM panels and compare the sound
transmission predictions with published numerical results. In all the examples below, we assume the panel is in contact
with air both at the incident (bottom) and exit (top) half-spaces. The air density is taken to be r0=1.25 kg/m3, and the
speed of sound in the air to be c0=340 m/s.
3.1. Single-layer isotropic aluminum panel

This first example is taken from the work of Leppington et al. [29], who studied sound transmission through an
aluminum panel (thickness 2.5 mm, density r=2700 kg/m3, Young’s modulus E=71 GPa and Poisson’s ratio m=0.33). In our
calculations, we assumed a loss factor of Z=0 for aluminum.

Fig. 2 shows a plot of the transmission coefficient t as a function of the incident angle y and the frequency f. Note that
for a given frequency, there is one transmission peak in the plot that occurs near the grazing angle y=901. For a given
frequency greater than the critical frequency (in this case, fc=4800 Hz), there is a second transmission peak t=1 at a
moderate incident angle This second peak is a phenomenon of acoustic coincidence that is caused by the matching of the
trace wavenumber in the panel with that in the ambient air [30]. Above the critical frequency, the coincident transmission
dominates, while the near-grazing transmission decreases.

When the incident acoustic wave arises from a diffuse sound field, then the measured transmission coefficient is
generally an averaged value, as defined in Eq. (49). Fig. 3 shows a comparison between the transmission loss values
Fig. 2. Plot of the transmission coefficients t as a function of the incident angle y and the frequency f for a single-layer aluminum panel.

Fig. 3. A comparison of sound transmission loss for an aluminum panel. Thick line is result from present model and thin line is experimental data [29].
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generated from model-based predictions with those measured experimentally. The experimental data was obtained from
an aluminum panel 1.4 m�0.9 m. The finite dimensions and boundary constraints of the panel caused resonances or
eigen-vibrations in the in-plane directions. These resonances are manifest in the experimental curve as fine-scale
oscillations (modal resonance peaks and dips). In contrast, the modeling curve is smooth and void of fine-scale oscillations
because the modeled panel was assumed to be infinite in the in-plane directions. The effect of panel size is not the prime
concern here, although this issue has been analyzed elsewhere [31].

The plot in Fig. 3 shows that the model accurately predicts the critical coincident frequency at �4800 Hz. In addition,
the agreement between the model prediction and the measured data is good for frequencies less than the coincident
frequency. However, for frequencies greater than the coincident frequency, a deviation of about 5 dB is noted between
theory and experiment. This discrepancy is attributed to acoustic damping of the material, which plays a more important
role above the critical coincident frequency. In our modeling we assumed no damping, i.e., zero loss factor Z=0 for the
aluminum panel.
3.2. FGM panels

We next consider examples of sound transmission through panels of functionally graded materials (FGM). We begin
with a metal–ceramic FGM panel that is purely metallic on one surface and purely ceramic on the opposite. Such FGM
panels can carry loads and provide thermal protection. The volume fraction of each component changes smoothly between
0% and 100% in the panel thickness direction. The compositional change can be in a linear or nonlinear fashion. Fig. 4 shows
three scenarios for the volume fraction change of the metal in the range of 0rzrh. We assume the volume variation can
be described by a power law function as follows [14]:

VmðzÞ ¼ 1�
z

h

� �n

, (53)

where Vm is the volume fraction of metallic constituent. The exponent n can take different values to represent different
scenarios, for instance

n¼ 0:2 Metal Rich ðMRÞ,

n¼ 1:0 Linear ðLNÞ,

n¼ 5:0 Ceramic Rich ðCRÞ:

8><
>: (54)

The effective material properties at any location, such as the density r, Lame’s constants l and m, are approximated by a
linear combination of those of the individual constituents weighted by the volume fraction of each phase [14], i.e.

rðzÞ ¼ VmrmþVcrc ,

lðzÞ ¼ VmlmþVclc ,

mðzÞ ¼ VmmmþVcmc , (55)
z

0

h

VF
1Metallic surface

Ceramic surface

MRCR LN

Fig. 4. Three cases of compositional variations in the thickness direction of FGM panel: metal rich (MR), linear (LN), and ceramic rich (CR).
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where the subscript m indicates the metal phase and the subscript c indicates the ceramic phase. Vc is the volume fraction
of ceramic constituent. The stiffness matrix C at location z is then given by

CðzÞ ¼

lþ2m l l 0 0 0

l lþ2m l 0 0 0

l l lþ2m 0 0 0

0 0 0 m 0 0

0 0 0 0 m 0

0 0 0 0 0 m

0
BBBBBBBBB@

1
CCCCCCCCCA
: (56)

The compliance matrix S as defined in Eq. (7) is just the inverse of the stiffness matrix C. With this, the transfer matrix T in
Eq. (30), the sound transmission coefficient t in Eq. (47), and the sound transmission loss TL in Eq. (48) can all be evaluated.

To extend the comparison, two additional FGM panel examples are considered [14]. In the cited work, the authors
adopted the conventional approach and divided the FGM panel into multiple discrete layers. Each layer was divided thinly
so that the material properties were assumed to possess constant values within the layer. In other words, the FGM panel
was essentially treated as a multi-layered panel. In contrast, we employ an analytical formulation for FGM panels. An FGM
panel is treated as a single entity without layer division, as evidenced in the transfer matrix definition Eq. (30).

Our first example of an FGM panel is a metal–ceramic panel comprised of stainless steel (SUS304) and silicon nitride
(Si3N4). The properties of the stainless steel are, density r=8166 kg/m3, Lame’s constants l=179 GPa, and m=102.7 GPa,
while properties for silicon nitride are, density r=2370 kg/m3, Lame’s constants l=119.9 GPa, and m=129.9 GPa. We
computed sound transmission loss for three cases of metal–ceramic compositions, i.e., metal rich (MR), linear (LN), and
ceramic rich (CR), as defined in Eqs. (53) and (54). The sound transmission loss is displayed in Fig. 5 as a function of
acoustic frequency at four different incident angles, i.e., y=01, 301, 451, and 751. Comparison is also made with the available
numerical result from the work of Hasheminejad and Shabanimotlagh [14]. For the sake of clarity, comparison is displayed
only for the metal-rich panel in the plots. The accuracy of the current formulation is demonstrated by the good agreement
between the results from these two different approaches.

The numerical results lead to some direct observations. First, the transmission loss curves for incident angles y=301,
451, and 751 show a large dip in the middle frequency range. This large dip occurs at the critical coincidence frequency fc.
Below fc, the transmission loss is controlled largely by the mass law, while above fc, the transmission loss is controlled
Fig. 5. Transmission loss (TL) as a function of incident wave frequency for a SUS304/Si3N4 FGM panel. Three panel cases, i.e., metal rich (MR), linear (LN),

and ceramic rich (CR), are plotted, and four incident angles are considered: (a) y=01, (b) y=301, (c) y=451, and (d) y=751.



Fig. 6. Transmission loss (TL) as a function of incident wave frequency for a Al/TiC FGM panel. Three panel cases, i.e., metal rich (MR), linear (LN), and

ceramic rich (CR), are plotted, and four incident angles are considered: (a) y=01, (b) y=301, (c) y=451, and (d) y=751.
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mainly by the stiffness of the panel. The transmission loss curve for incident angle y=01 does not show a large dip in the
frequency range from 10 Hz to 10 KHz, indicating an absence of the acoustic coincidence phenomenon at this incident
angle. Secondly, the critical coincidence frequency decreases as the incident angle increases. This is true whether the FGM
panel is metal rich (MR), linear (LN), or ceramic rich (CR). Thirdly, below the critical coincidence frequency fc, the
transmission loss is largest for the metal-rich panel, and smallest for the ceramic-rich panel. Above the critical coincidence
frequency fc, this trend is reversed, but differences in transmission loss diminish at higher frequencies. This last
observation, however, is panel-specific, and cannot be generalized to other metal–ceramic panels. In fact, our next panel
example will show the opposite behavior in transmission loss.

Our second example is a metal–ceramic FGM panel comprised of aluminum and titanium carbide (Al/TiC). The
properties for aluminum are, density r=2700 kg/m3, Lame’s constants l=50.4 GPa, and m=25.9 GPa, while those for
titanium carbide are, density r=4920 kg/m3, Lame’s constants l=133.3 GPa, and m=200 GPa. Again, we consider the
transmission loss for three cases, i.e., metal-rich, linear and ceramic-rich. The computational results are plotted in Fig. 6.
Inspection of these plots shows that the first two observations for the previous panel example also apply to this panel
example. That is, the acoustic coincidence phenomenon occurs for incident angles y=301, 451, and 751, but not for y=01 in
the frequency range from 10 Hz to 10 kHz. Furthermore, the critical coincidence frequency decreases as the incident angle
increases. However, the third observation for the last panel example is not applicable here. In fact, the trend is opposite for
this example. That is, below the critical coincidence frequency fc, the transmission loss is largest for ceramic-rich panel,
while the metal-rich panel has lowest transmission loss below the critical coincidence frequency fc. This indicates that the
transmission loss depends on the specific material properties of an FGM panel, rather than on a simple relationship of
metal–ceramic composition. Note that the results from the present study are consistent with those from different approach
[14], supporting the accuracy of the present formulation.

4. Conclusions

In summary, we have developed an analytical solution for sound transmission and reflection for unbounded panels
composed of functionally graded materials (FGM). We achieved this by following a procedure of variable re-grouping and
matrix manipulation in converting the governing equations in the physical domain into the spectral domain. We were able
to cast the governing equations with space-dependent coefficients into an equation system suitable for matrix integration,



C. Huang, S. Nutt / Journal of Sound and Vibration 330 (2011) 1153–11651164
thereby facilitating the derivation of the transfer matrix for an FGM panel. Our approach is unique in that FGM panels are
treated as a single entity, and the effect of the gradation in material properties is automatically accounted for in the
analytical formulation. This approach contrasts with the conventional treatment where the FGM panel is divided into
multiple thin layers in order to seek a layer-wise analytical solution. Furthermore, our analytical solution includes multi-
layer panels as a special case. In other words, our formulation treats both the multi-layer panel and FGM panel in a unified
manner.

To verify the accuracy of the formulation, the analytical solution was applied to predict sound transmission loss for a
single-layer isotropic panel and two metal–ceramic FGM panels. The results obtained were generally in good agreement
with previously published data, either experimentally or numerically. Certain deviations may be caused by parameters
that are not yet incorporated in the current study, such as the finite panel size, the panel mounting conditions at
boundaries, and the acoustic damping of the panel materials. The effects of these parameters will be addressed in
subsequent studies.

Several practical applications are related to the analytical formulations developed in this study. For example, the
current formulation could be employed to study the sensitivity of sound transmission loss to various panel parameters.
The parameter sensitivity would be useful to acoustic engineers to design and/or select panel materials to optimize sound
transmission characteristics. A second application involves the design of panel layouts to meet specific acoustic
requirements using given materials. In addition to such forward analysis and inverse design problems, there is yet another
application that is related to system identification or material characterization for an FGM panel. In the FGM panel
examples described, the distribution of metal or ceramic phase in the panel thickness direction was assumed to be known,
as shown in Eqs. (55) and (56). In practice, this is rarely the case. In fact, it is often necessary to determine the phase
distribution in an FGM panel by measuring the sound transmission. The analytical formulation of this study can be
adjusted to undertake such material characterization tasks.
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